American Pediatric Surgical Association

Standardized Toolbox of Education for Pediatric Surgery

Congenital Pulmonary Airway Malformations

APSA Education Committee2019-2020

Congenital Pulmonary Airway Malformations

- Laura Hollinger, MD
 - Medical University of South Carolina

- Edited by:
 - Grace Mak, MD (University of Chicago)
 - Steven Lee, MD (UCLA Mattel Children's Hospital)

History

- Term newborn born earlier today with prenatal diagnosis of fetal lung malformation
 - Baby initially required CPAP, but then was weaned to room air
 - Prenatal ultrasound: right sided cystic lung lesion with a CCAM Volume Ratio (CVR) of 1.1
 - No mediastinal shift
 - No diaphragm flattening
 - No hydrops
 - No feeding vessel identified

History

Echogenic CPAM on prenatal ultrasound

History Discussion Slide

What history do you want to know?

- Age: Term baby, day of birth
- Mass: Prenatal u/s @21
 weeks: right sided cystic lung
 lesion, CVR 1.1, no diaphragm
 or mediastinal shift. No
 hydrops
- Birth hx: Spontaneous vaginal delivery, CPAP required initially, then weaned to room air

- Medical hx: uneventful pregnancy; maternal steroids given
- Family hx: none
- ROS: baby is now breathing normally on room air

Differential Diagnosis

Lung lesions

- Congenital Pulmonary Airway Malformation (CPAM)
- Bronchopulmonary sequestration (BPS)
- Congenital Lobar Emphysema
- Bronchogenic Cyst

Other lesions

- Enteric duplication cyst
- Fetal lung interstitial tumor
- Cystic Pleuropulmonary Blastoma (PPB)
- Congenital diaphragmatic hernia (CDH)
- Vascular malformation

Lung Lesion Definitions

Congenital Pulmonary Airway Malformation (CPAM)

- Abnormal development of lung tissue with blood supply from pulmonary system
- Classically communicate with lung tissue via bronchial airways
- Can be solid or cystic
- Lower lobes more common

Lung Lesion Definitions

Bronchopulmonary sequestration (BPS)

- Abnormal development of lung tissue with systemic blood supply
- Lack of communication with bronchial airways
- Usually solid
- Can be intra- or extra-lobar
- Lower lobes more common

Bronchogenic Cyst

- Abnormal development from tracheo-bronchial airway
- Occurs centrally in mediastinum

Congenital Lobar Emphysema

- Congenital Lobar Overinflation
- Left upper lobe most common

Physical Exam

What specifically would you look for?

- Vitals: P 120, RR 30, BP 70/50, T 99F
- Appearance: Healthy term male, comfortable and swaddled in warmer
- PE exam findings:
 - No retractions
 - No increased work of breathing
 - No palpable masses
 - No wheezing

Studies (Labs, Imaging)


- What labs are needed?
 - None

- What imaging is needed?
 - Chest X ray initially
 - CT Chest with IV contrast
 - Closer to time of surgery

Study Results

Large cystic lung lesion in right chest

Case Discussion

Diagnosis

Congenital Pulmonary Airway Malformation (CPAM)

Management:

- Pre-op: Imaging (Chest XR, CT scan with angiography)
- Operative: Lobar resection

Interval Steps Before Surgery

Chest X-ray

- Rule out potentially life-threatening issues (mediastinal shift, pneumothorax, larger space occupying lesion)
- Not sensitive enough to see all lesions

CT Chest with angiography or IV contrast

Typically performed after neonatal period (age 3-6 months)

Allows for anatomic operative planning (i.e. vascular supply)

American Pediatric Surgical Association

Saving Lifetimes[™]

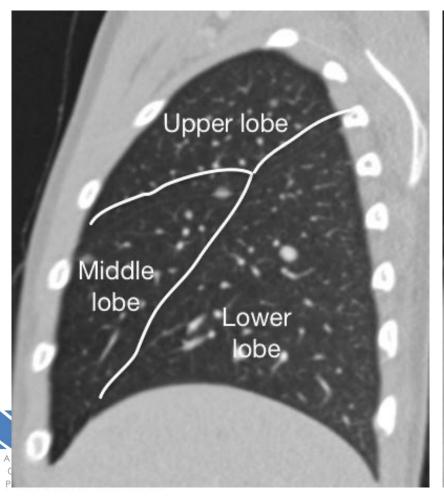
Interval Steps Before Surgery

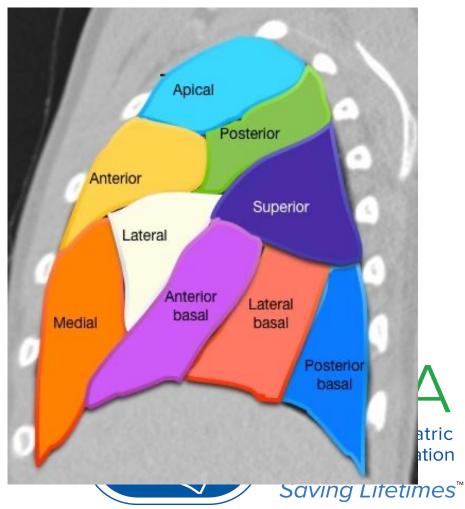
Operative planning/Timing of surgery

- Symptomatic patient: quickly after birth
- Asymptomatic patient: sometime in the first year of life to allow for post-resection compensatory lung growth
- If active infection, treat with antibiotics initially then schedule interval surgery 6-8 weeks later once infection adequately treated

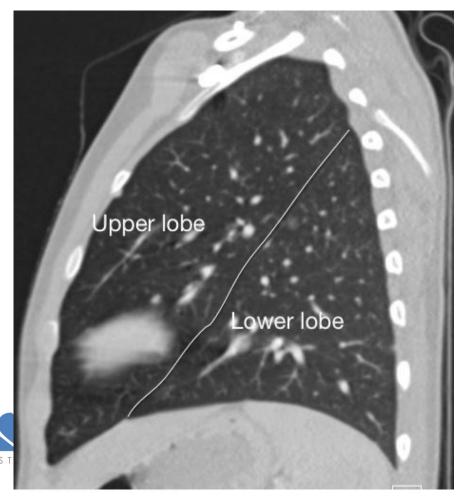
Interval Steps Before Surgery

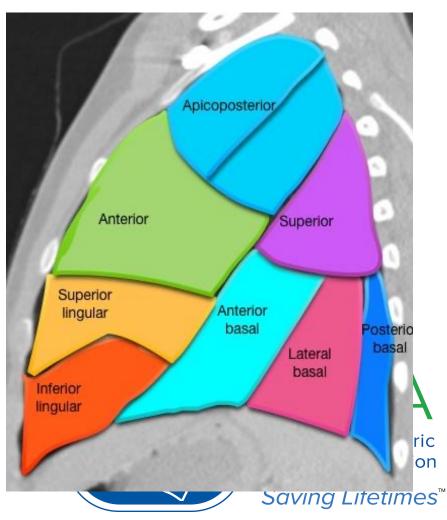
Indications for surgery


- Symptoms
- Future complications of infection (pneumonia), pneumothorax, bleeding, heart failure, malignant degeneration



Operation


Anatomic Lobar Resection: Right Lung



Operation

Anatomic Lobar Resection: Left Lung

Operation

Lobar Resection:

- Open or Thoracoscopic
- Inferior pulmonary ligament divided
 - Look for a systemic feeding vessel and ligate if present
- Division of the fissure
- Ligation of lobar artery, vein, and bronchus
- Air leak test
- Chest tube placed

Post-Operative Management

Chest tube

Remove once output is low and air leak resolved

Pain management

- Regional (epidural, nerve block) more common for thoracotomy
- NSAIDS, Tylenol, opioids as needed

Complications

- Peri-operative
 - Bleeding
 - Need for postoperative respiratory support
 - Bronchial plug
 - Bronchial stumpleak

- Long Term
 - Typically, no long term sequelae
 - If resection
 performed early,
 patients have
 compensatory lung
 growth

- Newborn with respiratory distress and cystic appearance to left lower lobe on chest X ray.
 Most likely diagnosis?
 - A. Bronchopulmonary sequestration
 - B. Congenital pulmonary airway malformation (CPAM)
 - C. Congenital lobar emphysema
 - D. Pneumothorax

- Newborn with respiratory distress and cystic appearance to left lower lobe on chest X ray.
 Most likely diagnosis?
 - A. Bronchopulmonary sequestration
 - B. Congenital pulmonary airway malformation (CPAM)
 - C. Congenital lobar emphysema
 - D. Pneumothorax

- 3 month old with known CPAM presents to your office, asymptomatic. What is the best study to order to evaluate the lesion prior to discussing surgery?
 - A. Chest X-ray
 - B. Ventilation/perfusion scan (V/Q scan)
 - C. MRI of the chest
 - D. CT of the chest with IV contrast

- 3 month old with known CPAM presents to your office, asymptomatic. What is the best study to order to evaluate the lesion prior to discussing surgery?
 - A. Chest X-ray
 - B. Ventilation/perfusion scan (V/Q scan)
 - C. MRI of the chest
 - D. CT of the chest with IV contrast

Final Discussion/Review

Types of congenital lung lesions

- Congenital pulmonary airway malformation (CPAM)
- Bronchopulmonary sequestration (BPS)
- Congenital lobar emphysema
- Bronchogenic cyst

Diagnosis

Often, prenatally by ultrasound

 Later in life, can present as frequent pneumonias or as an incidental finding

> American Pediatric Surgical Association

Saving Lifetimes™

Final Discussion/Review

Imaging modalities

- Chest X-ray
- CT Chest with IV contrast (even if lesion not visible on CXR)

Management of CPAM

- Elective resection in first year of life if asymptomatic
 - Risk of recurrent pneumonia, pneumothorax, heart failure, or malignant degeneration
- Watchful waiting

Final Discussion/Review

Operative approach

- Open or thoracoscopic
- Complete resection of the affected lobe
- Typically performed within the first year of life to allow for compensatory lung growth

Acknowledgement Slide

The preceding educational materials were made available through the American Pediatric Surgical Association

In order to improve our educational materials we welcome your comments/ suggestions:

www.eapsa.org

