Hepatoprotective Therapies for TPN-Associated Cholestasis

Robert A. Cowles, M.D.

Department of Surgery

Columbia University Medical Center and

Morgan Stanley Children's Hospital

New York, NY USA

For the APSA Outcomes and Clinical Trials Committee

Working Group

Shawn Rangel – Children's Hospital Boston Casey Calkins – Children's Hospital of Wisconsin Douglas Barnhart – Primary Children's Hospital Daniel Teitelbaum – C.S. Mott Children's Hospital Marjorie Arca – Children's Hospital of Wisconsin Margaret "Muggs" Helin – University of Wisconsin APSA – Outcomes and Clinical Trial Committee

Goals

- ✓ Review risk factors associated with parenteral nutrition-associated cholestasis (PNAC)
- ✓ Review evidence for the role of lipid emulsions in PNAC
- ✓ Review evidence for other nutritional strategies in PNAC
- ✓ Review evidence for use of medications in PNAC
- ✓ Review use and outcomes of enteral fish oil

Introduction

Parenteral nutrition (PN) developed in late
 1960s and is life-saving

 PN-associated cholestasis (PNAC) and PNassociated liver disease (PNALD) associated with morbidity and mortality

How are PNAC and PNALD treated or avoided?

Methods

Literature review – PubMed, Cochrane Database

- General Topics
 - 1. Non-nutrient risk factors in PNAC
 - 2. PNAC and the role of lipid emulsions
 - 3. Nutritional (non-lipid) considerations
 - 4. Medication use in PNAC

Specific questions within each topic

Methods

Studies reviewed and evidence graded

Classes of Evidence

- I Systematic review of RCT's or RCT with narrow CI
- II Cohort studies, low quality RCT's, outcomes research
- **III** Case-control studies
- **IV** Case series
- **V** Expert opinion

Grades of Recommendation

- A Consistent Level 1 Studies
- **B** Consistent Level 2 or 3 studies or extrapolation from Level 1 studies
- C Level 4 studies/extrapolations from Level 2 or 3 studies
- **D** Level 5 evidence; inconsistent or inconclusive studies

Topic 1 - Non-nutrient Risk Factors in PNAC

- Prematurity/Low Birth Weight
- Role of underlying diagnosis
- Duration of PN therapy
- Sepsis

- Question 1 Does prematurity or low birth weight increase the risk of PNAC?
 - Multiple case-series published since the 1970s have supported the idea that prematurity is significant risk factor
 - Three recent reports failed to show this same effect
 - Spencer, et al (2005)
 - Healy, et al (2008)
 - Hsieh, et al (2009)
 - Majority of, but not all, studies support role of prematurity in PNAC (Class II and Class III)

- Question 2 What underlying diagnoses are most closely associated with PNAC?
 - Spencer, et al (2005) Prospective trial → NEC
 - Christensen, et al (2007) Case series → NEC, gastroschisis, intestinal atresia
 - Robinson (2008) Case-control study → NEC
 - Healy et al (2008) Fluconazole prophylaxis → NEC
- Necrotizing enterocolitis appears to be a significant risk factor for PNAC (Class II and Class III)

- Question 3 Does duration of PN impact development of PNAC?
 - Multiple published studies have shown that longer duration of PN is strongly associated with development of PNAC
 - One surgical study (Beath, et al 1996) failed to show that duration of PN predicted PNAC
- Majority of data support PN duration as a risk factor for PNAC (Class III)

- Question 4 Does the number of septic episodes impact development of PNAC?
 - Association between sepsis and jaundice clear
 - Virtually all reviewed studies showed that documented sepsis was closely associated with an increased risk of PNAC
- Data support sepsis as a risk factor for PNAC (Class III)

Topic 2 - The role of lipid emulsions in PNAC

- Effect of altering lipid infusion on PNAC
- Effect of non-soybean based lipid administration
- Effect of combination lipids

PNAC and the role of lipid emulsions

- Question 1 Does altering the administration schedule or dosing of soybean-based lipid emulsions decrease frequency or severity of PNAC?
 - Several studies (Class III) show that:
 - ➤ Restriction of IV fat emulsion (1 g/kg, 2-3 times per week) is safe and does not cause clinically significant fatty acid deficiency
 - Restriction of IV fat emulsion is associated with improved cholestasis in infants and children who have developed PNAC
- Restricting infusion of soybean-based lipid emulsions is indicated for patients at risk for PNAC (Grade B)

PNAC and the role of lipid emulsions

- Question 2 Does use of non-soybean-based lipids decrease the frequency or severity of PNAC?
 - Studies (Class III and IV) on fish oil-based lipids show:
 - Safety with low incidence of fatty acid deficiency
 - ➤ Ability to ameliorate PNAC that was superior to soy bean-based lipids

•Fish oil-based lipid emulsions are safe and effective in reversing PNAC in children (Grade B)

PNAC and the role of lipid emulsions

- Question 3 Does use of "hybrid" lipids decrease the frequency or severity of PNAC?
 - SMOF Soybean, MCT, Olive oil, Fish oil (Goulet, et al)
 - ➤ Randomized Trial SMOF effective at lowering bilirubin
 - Olive Oil/Soy bean lipids (80%/20%) (3 studies)
 - > Safe
 - > Fatty acid deficiency not reported
 - Effect on PNAC not studied in detail
- •"Hybrid" lipid use encouraging but there are insufficient data to recommend use (Grade U)

Topic 3 – Non-lipid strategies in PNAC

- Role of dextrose/protein load
- Role of amino acid formulation
- Role of "conditional" amino acids
- Role of trace elements
- Role of trophic feeding
- Role of cycling

- Question 1 Does initial dose/advancement or protein load influence development of PNAC?
 - Early study (Vileisis, 1980)
 - Equal incidence of cholestasis, onset sooner, bilirubin higher with higher protein infusion
 - Several recent Class I and Class II studies show:
 - ➤ Initial dose, rate of advancement and protein in PN does not increase risk of developing PNAC
 - > Duration of PN and total cumulative amount of PN determine PNAC
- Initial dose/advancement of PN does not increase risk of PNAC (Class I/II)

- Question 2 Which amino acid formulations are associated with development of PNAC?
 - Aminosyn (APF) and TrophAmine (TA)
 - Forchielli (1995) No difference between APF and TA
 - ➤ Wright (2003) APF, birth weight, duration of PN identified as risk factors for PNAC
- There is little evidence (Class III) that proves a difference between amino acid formulations in development of PNAC

- Question 3 Can supplementation of PN with "beneficial" amino acids (AA) reduce incidence of PNAC?
 - Taurine "beneficial" to liver; used to conjugate bilirubin
 - ➤ Spencer (2005) Prospective study; Taurine supplement caused:
 - ❖ Decreased direct bilirubin (not statistically significant) entire cohort
 - ❖ Decreased direct bilirubin (significant) neonates with NEC
 - Glutamine "hepatoprotective"; trophic to gut
 - ➤ Duggan (2004) Randomized trial; enteral glutamine had no effect on PNAC
 - ➤ Wang (2010) Randomized trial; parenteral glutamine associated with decreased AST and total bilirubin.
- Evidence for AA supplement is weak (Class II-IV, Grade C)

- Question 4 What trace elements impact PNAC?
 - Manganese (Mn) and PNAC
 - Mn levels correlated with transaminase & bilirubin levels
 - RCT higher Mn dose resulted in higher conjugated bilirubin
 - Copper (Cu) and PNAC
 - > Cu essential, making elimination difficult
 - > 50% Cu reduction in setting of PNAC monitor levels
 - Choline and PNAC
 - Choline low in long-term PN
 - Choline supplementation associated with lower ALT/AST but not T bili
- Evidence weak (Class III/IV, Grade C)

- Question 5 Does trophic feeding, if possible, impact PNAC?
 - Trophic feeding of patients on PN has been shown to:
 - Lower conjugated bilirubin
 - Accelerate enteral autonomy
 - Prevent PNAC
 - Studies difficult to control
 - Enteral feeding may not be practical in many clinical cases
- Evidence strong (Class II, Grade B) that enteral feeding can reduce incidence and severity of PNAC

- Question 6 Does cycling of PN impact PNAC?
 - Adult study (Hwang 2000) 65 patients
 - Cycling PN prevented progression of PNAC in mild to moderate cases
 - ➤ No effect on severe cases of established PNAC
 - Recent pediatric study (Jensen 2009) Retrospective; 107
 patients with gastroschisis (36 cycled, 71 continuous)
 - Cycled group had delayed onset and lower incidence of PNAC
 - Confounding factors affected results
- Moderately weak evidence (Class IV, Grade C) that cycling PN decreases PNAC

Topic 4 – Medication use in PNAC

Role of CCK-octapeptide

Role of oral supplemental bile acids

Role of erythromycin

Medications in PNAC

- Question 1 Is cholecystokinin-octapeptide (CCK-OP) effective in treating PNAC?
 - CCK promotes bile flow
 - Early series showed promise
 - Large, prospective randomized trial (Teitelbaum 2005)
 - >243 infants (124 CCK, 118 Placebo, 1 excluded)
 - ➤ No effect on conjugated bilirubin levels, or other secondary outcomes
 - ➤ No effect on gallstone formation
- Routine use of CCK-OP not recommended (Class I, Grade A)

Medications in PNAC

- Question 2 Are supplemental bile acids (ursodiol) effective in preventing or treating PNAC?
 - Effectiveness in sclerosing cholangitis and biliary cirrhosis
 - Case series with small numbers showed variable results
 - Open label trial (22 treated vs 30 control) Heubi 2002
 - No difference in peak conjugated bilirubin, ALT, etc.
 - Randomized controlled trial Arslanoglu 2008
 - ➤ Neonates, small numbers
 - >GTT, ALT, AST decreased in treatment group but not control
- •Supplemental bile acids may result in improvement in PNAC (Class II, III, Grade C)

Medications in PNAC

- Question 3 Is erythromycin effective in preventing or treating PNAC?
 - Increases motility; effective in promoting feeding
 - Randomized controlled trial Ng 2007
 - > 182 infants (91 erythromycin, 91 placebo)
 - ➤ Erythromycin associated with lower incidence of PNAC, sooner full enteral nutrition, earlier cessation of PN, lower incidence of sepsis
- A small body of evidence (Class II, Grade C) suggests that erythromycin may prevent PNAC via various effects on enteral tolerance